More About Divisible Design Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Divisible design graphs

A divisible design graph is a graph whose adjacency matrix is the incidence matrix of a divisible design. Divisible design graphs are a natural generalization of (v, k, λ)-graphs, and like (v, k, λ)-graphs they make a link between combinatorial design theory and algebraic graph theory. The study of divisible design graphs benefits from, and contributes to, both parts. Using information of the e...

متن کامل

Walk-regular divisible design graphs

A divisible design graph (DDG for short) is a graph whose adjacency matrix is the incidence matrix of a divisible design. DDGs were introduced by Kharaghani, Meulenberg and the second author as a generalization of (v, k, λ)-graphs. It turns out that most (but not all) of the known examples of DDGs are walk-regular. In this paper we present an easy criterion for this to happen. In several cases ...

متن کامل

More Equienergetic Signed Graphs

The energy of signed graph is the sum of the absolute values of the eigenvalues of its adjacency matrix. Two signed graphs are said to be equienergetic if they have same energy. In the literature the construction of equienergetic signed graphs are reported. In this paper we obtain the characteristic polynomial and energy of the join of two signed graphs and thereby we give another construction ...

متن کامل

More about Singular Line Graphs of Trees

We study those trees whose line graphs are singular. Besides new proofs of some old results, we offer many new results including the computer search which covers the trees with at most twenty vertices.

متن کامل

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SSRN Electronic Journal

سال: 2011

ISSN: 1556-5068

DOI: 10.2139/ssrn.1974443